
To learn more about onsemi™, please visit our website at
www.onsemi.com

ON Semiconductor

Is Now

onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

© Semiconductor Components Industries, LLC, 2016

August, 2016 − Rev. 3
1 Publication Order Number:

AND9370/D

AND9370/D

AX8052 Debugger
Software Manual

Introduction:
The ON Semiconductor AX8052 line of fully integrated

embedded Microcontrollers feature advanced debug
features that significantly ease the task of writing firmware
compared to other 8052 compatible Microcontrollers. The
ON Semiconductor AX8052 Debug System consists of the
following components:
• The ON Semiconductor AX8052 Debug Interface. This

device connects the AX8052 Microcontroller Debug
Interface, consisting of the Signals RESET_N,
DBG_EN, PB6, PB7, GND, VCCIO to a standard PC
USB Interface.

• The AXSDB command line debugger processes
commands and executes them on the Microcontroller
using the Debug Interface. The AXSDB debugger can
be directly used, or through the AxCode::Blocks IDE. It
is fully scriptable thanks to its built-in Tool Control
Language (TCL) interpreter.

• The AxCode::Blocks IDE. AxCode::Blocks is a
customized version of the popular Code::Blocks IDE. It
is documented elsewhere, see AxCodeBlocks.pdf for an
introduction. Users wishing to develop with the
AxCode::Blocks IDE need not be familiar with axsdb
debugger commands, and can skip the remainder of this
document.

AXSDB

AXSDB is the ON Semiconductor AX8052 Symbolic
Command Line debugger. It is fully scriptable, thanks to its
built-in Tool Control Language (TCL) scripting engine. It is
suggested that the reader consults the Documentation
section on the TCL homepage, http://www.tcl.tk/, for
information on the standard TCL commands. The remainder
of this document will describe the AX8052 specific
commands AXSDB adds to the standard TCL commands.
AX8052 specific Commands come in two flavors:
• Core commands implemented in the Debugger DLL,

libaxsdb−0.dll
• Convenience Commands implemented in TCL on top

of the core commands, contained in axsdb.tcl. These
commands can be changed by the user by changing
axsdb.tcl.

All commands, variables and channels are defined in the
namespace axsdb. axsdb.tcl imports them into the global
namespace.

State handling
When AXSDB is started, it responds with a prompt. The

debugger is then ready to accept user commands. It does
however not yet have access to any hardware.

First, AXSDB must be connected to any AX8052 Debug
Interface, connected to an USB port of the Computer
running AXSDB. The commands LIST_TARGETS,
CONNECT_TARGET, and DISCONNECT_TARGET
manage AXSDB’s connections to the active Debug
Interface. Note that the default axsdb.tcl automatically
connects to the Debug Interface if it finds exactly one
connected to the PC. Once AXSDB has connected to a
Debug Interface, it is configured to be inactive, i.e.
RESET_N is driven high, DBG_EN is driven low, and PB6
and PB7 are set to high-impedance. In this state a target
board may be connected to the debug interface without
disturbing the target microprocessor.

In order to actually start debugging, AXSDB needs to be
connected to the Microcontroller. The commands
CONNECT and DISCONNECT manage the connection to
the Microcontroller hardware debug interface.

Once connected to the Microcontroller, commands that
control the Microcontroller state can be used, such as RUN,
STEP, STOP, etc.

www.onsemi.com

APPLICATION NOTE

http://www.tcl.tk/
 http://www.onsemi.com/

AND9370/D

www.onsemi.com
2

Command line arguments

Table 1.

−−norc Disable the processing of the normal
startup script axsdb.tcl; Convenience
Commands documented below will not
be available.

−−script <tclscript> Add the given script to the TCL scripts
evaluated at debugger startup.

−−listserials List the connected debug interface serial
numbers adn exit.

−−serial <serial> Connect to debug interface with the given
serial number.

−−flashprog <file> Program the Microcontroller Flash with
the given file and exit.

−−ignorecalibration Normally, flashprog saves Microcontroller
Calibration data if present in the last 1k
sector of the FLASH memory. If this
option is given, Calibration data is
erased.

−−oldkeys <keylist> This option specifies the old debugger
keys to try in order to read out (and
preserve) Microcontroller Calibration
data.

−−newkey <key> When −−flashprog is given, use this key
to protect the newly flashed firmware

−−hwreset Perform a hardware reset (pulse
RESET_N low)

−−debuglink Start as DebugLink relay. Standard input
is copied to the debug link, and debug
link is copied to standard output. May be
combined with −−hwreset. Terminates
when standard input is closed.

−−savecalib <file> Save calibration data (if present in the
last 1k sector of the FLASH memory) into
the file given

−−loadcalib <file> Load calibration data from the file given
into the last 1k sector of the FLASH
memory

−−version Print the version number and exit

−−installdir Print the installation directory and exit

−−help Display help and exit.

Core commands

TRACEIO
The TRACEIO command allows an event log to be

written into a file; this is intended to help debugging axsdb.

Arguments:

Table 2.

−−off turn logging off

−−error log only error events

−−normal log normal and error events

−−poll log polling in addition to normal and error
events

−−lowlevelio log everything, including low level IO
operations

−−stderr Log to standard error instead of a
supplied file name

−−stdout Log to standard error instead of a
supplied file name

<filename> Open the given file for writing and use it
as log file

LIST_TARGETS
LIST_TARGETS returns a TCL list containing the serial

numbers of all connected AX8052 Debug Interfaces.

DISCONNECT_TARGET
DISCONNECT_TARGET disconnects axsdb from the

currently connected AX8052 Debug Interface. The Debug
Interface is set such that it does not interfere with running a
connected Microcontroller.

CONNECT_TARGET
CONNECT_TARGET connects axsdb to the specified

AX8052 Debug Interface.

Arguments:

Table 3.

<serial> The serial number of the debug interface
to connect to

TARGET_SERIAL
TARGET_SERIAL returns the serial number of the

currently connected AX8052 Debug Interface, or an empty
string if no Debug Interface is currently connected.

 http://www.onsemi.com/

AND9370/D

www.onsemi.com
3

READ_MEM
READ_MEM reads one or more bytes from

Microcontroller memory. It can only be issued if the
Microcontroller is in halt state. The read results are returned
in a TCL list.

Arguments:
Table 4.

−−code, −c Read from code address space

−−direct, −d Read from direct address space;
addresses below 128 address the
internal RAM (addresses from 0 to 31
address the four banks of R0−R7
registers), addresses above or equal 128
address the on chip special function
registers.

−−indirect, −i Read from indirect address space; this
option addresses the internal RAM

−−external, −e Read from external address space

−−flash, −f Read from flash

−−sfr, −s Read from sfr address space

−−pagedexternal, −p Read from paged external address
space; this is the same address space as
external, however only the low address
byte is specified. The high byte is taken
from the XPAGE special function register

<address> The address to read from

<length> The number of bytes to read; if the length
is omitted, one is assumed

WRITE_MEM

Arguments:
WRITE_MEM writes one or more bytes to

Microcontroller memory. It can only be issued if the
Microcontroller is in halt state.

Table 5.

−−code, −c Write to code address space

−−direct, −d Write to direct address space; addresses
below 128 address the internal RAM
(addresses from 0 to 31 address the four
banks of R0−R7 registers), addresses
above or equal 128 address the on chip
special function registers.

−−indirect, −i Write to indirect address space; this
option adresses the internal RAM

−−external, −e Write to external address space

−−flash, −f Write to flash

−−sfr, −s Write to sfr address space

−−pagedexternal, −p Write to paged external address space;
this is the same address space as
external, however only the low address
byte is specified. The high byte is taken
from the XPAGE special function register

<address> The address to write to

<data...> The data bytes to write; multiple bytes
may be specified

FILL_MEM
FILL_MEM writes a single data byte into one or more

consecutive bytes of Microcontroller memory. It can only be
issued if the Microcontroller is in halt state.

Arguments:

Table 6.

−−code, −c Write to code address space

−−direct, −d Write to direct address space; addresses
below 128 address the internal RAM
(addresses from 0 to 31 address the four
banks of R0−R7 registers), addresses
above or equal 128 address the on chip
special function registers.

−−indirect, −i Write to indirect address space; this
option addresses the internal RAM

−−external, −e Write to external address space

−−flash, −f Write to flash

−−sfr, −s Write to sfr address space

−−pagedexternal, −p Write to paged external address space;
this is the same address space as
external, however only the low address
byte is specified. The high byte is taken
from the XPAGE special function register

<address> The address to write to

<length> The number of data bytes to write

<data> The data byte to write; it is optional. If not
given, the default is to write 0xff into code
and flash address space, and 0x00
otherwise.

READ_PC
READ_PC returns the program counter of the

Microcontroller. Returned values may be unreliable unless
the Microcontroller is in halt state.

WRITE_PC
WRITE_PC sets the program counter of the

Microcontroller. It can only be issued if the Microcontroller
is in halt state.

CPUSTATE
CPUSTATE returns a list or the current state of the

Microcontroller.

Arguments:

Table 7.

−−all, −a Return a TCL list of all recent state
transitions. Each list element is in itself a
list, containing the state (as string) and a
timestamp.

−−last, −l Return the current state as string.

−−text, −−iso8601, −t Return timestamps as ISO8601 strings

−−numeric, −n Return timestamps as Unix time (number
of seconds since 1970).

 http://www.onsemi.com/

AND9370/D

www.onsemi.com
4

CONNECT
CONNECT connects axsdb to the Microcontroller, i.e. it

causes axsdb to start controlling the Microcontroller.

Arguments:

Table 8.

<unlockkeys> Since the debug interface can potentially
reveal sensitive information (such as the
firmware), it can be protected from
unauthorized use by a 64-bit access key.
If the Microcontroller is protected, then
the key must be supplied to connect. If
multiple keys are given, they are tried in
sequence. If the Microcontroller is
unprotected (i.e. it has a key of
0xffffffffffffffff), then no key needs to be
supplied.

DISCONNECT
DISCONNECT disconnects axsdb from the

Microcontroller, i.e. the Microcontroller is released to run
on its own.

HWRESET
HWRESET controls the RESET_N line from the debug

interface to the Microcontroller.

Arguments:

Table 9.

−−pulse, −p RESET_N is toggled low and then high
again; the Microcontroller is
disconnected.

−−off, −f RESET_N is driven high (inactive)

−−on, −o RESET_N is driven low (active); the
Microcontroller is disconnected

RUN
RUN causes the Microcontroller to start executing at the

current PC value. Temporary breakpoint addresses may be
given; these breakpoints will only be active during run and
will be deleted as soon as the CPU stops.

Arguments:

Table 10.

−−setaddr, −a <addr> Set the breakpoint address

−−symbol, −s <sym> Set the breakpoint address to the
address of the symbol <sym>. The
symbol must be located in code address
space.

−−sourceline, −l <sl> Set the breakpoint address to the source
line <sl>

STOP
STOP halts Microcontroller instruction execution

RESET
RESET performs a (software) reset of the Microcontroller

STEP
STEP causes the Microcontroller to execute the

instruction at the current PC (or schedule an enabled
interrupt), but halt again after executing one instruction.

STEPLINE
STEPLINE causes the Microcontroller to execute

instructions until the current C language source line
completes execution. It steps through function calls if
embedded in the current C language source line. The
debugger steps instructions, so execution is significantly
slower than real-time.

STEPINTO
STEPINTO causes the Microcontroller to execute the

instructions until the PC leaves the current C language
source line. Function calls stop the execution. The debugger
steps instructions, so execution is significantly slower than
real-time.

STEPOUT
STEPOUT causes the Microcontroller to complete

execution of the current C language function. The debugger
steps instructions, so execution is significantly slower than
real-time.

WRITEBACK
In order to speed up operation of the debugger, axsdb

contains caches of all memory of the Microcontroller that
can safely be cached. Consequently, WRITE_MEM, LOAD
and other commands only directly modify the caches.
WRITEBACK causes the dirty caches to be written to the
chip, for example the program loaded by LOAD.
WRITEBACK can only be issued if the Microcontroller is
in halt state.

BULKERASE
BULKERASE causes the Microcontroller to be safely

erased. All FLASH content is lost

Arguments:

Table 11.

−−ignorecal, −i Normally, if calibration data is available in
the calibration sector, it is saved before
the bulk erase and restored after the bulk
erase. Specifying this option discards the
calibration sector.

−−keys, −k
<unlockkeylist>

The old key to be used to access the
calibration sector. Multiple keys may be
given, in which case they are tried in
sequence.

WRITEKEY
Since the debug interface allows access to sensitive

information (like the firmware), it can be protected from
unauthorized use by a 64-bit key. WRITEKEY writes the
key into the Microcontroller.

Arguments:

Table 12.

<unlockkey> The key to be requested before granting
debug interface access

 http://www.onsemi.com/

AND9370/D

www.onsemi.com
5

WRITEPROTECT
The FLASH is organized as 64 1kByte sectors. FLASH

contents can be protected with sector granularity.
WRITEPROTECT protects the contents of a FLASH sector
from overwriting. The only way to restore writes to
protected sectors is by completely erasing the device by
issuing a bulk erase.

Arguments:

Table 13.

<address> An address that lies within the sector to
be protected

ERASEPROTECT
The FLASH is organized as 64 1kByte sectors. FLASH

contents can be protected with sector granularity.
ERASEPROTECT protects the contents of a FLASH sector
from erasing. The only way to restore erase functionality of
protected sectors is by completely erasing the device by
issuing a bulk erase.

Arguments:

Table 14.

<address> An address that lies within the sector to
be protected

LOAD_MEM
LOAD_MEM reads a file containing binary code and/or

debugging information into the debugger.

Arguments:

Table 15.

−−debug, −−symbols,
−d

When used together with −−omf51, only
load the symbolic debug information from
the OMF51 file, and discard the binary
code.

−−omf51, −o Load an OMF51 format file

−−hex, −−ihex, −i Load an Intel Hex format file

−−cdb, −c Load a CDB format file

BREAKPOINT
BREAKPOINT without argument returns a list of

currently set breakpoints, their status (i.e. whether they are
enabled or disabled), their count and their associated TCL
script.

BREAKPOINT with the following arguments manipulate
the BREAKPOINT list.

Arguments:

Table 16.

−−disable, −d Disable the breakpoint

−−enable, −e <num> Enable the breakpoint if <num> is
nonzero or absent, disable otherwise

−−setaddr, −a <addr> Set the breakpoint address

−−symbol, −s <sym> Set the breakpoint address to the
address of the symbol <sym>. The
symbol must be located in code address
space.

−−sourceline, −l <sl> Set the breakpoint address to the source
line <sl>

−−count, −c <count> Ignore Breakpoint for <count> times
before stopping the Microcontroller

−−script, −S <script> Execute the TCL script <script> when
hitting the breakpoint. The Script is
executed in the global context.

−−new, −n Create a new breakpoint

−−index, −i <nr> Manipulate Breakpoint Number <nr>

−−delete, −D <nr> Delete Breakpoint Number <nr>

DISASS
DISASS disassembles one or multiple instructions and

returns the result as a list (if one instruction is
disassembled), or as a list of lists. Each instruction is
described by the following list elements: the address
(numeric), the opcode (as hex string), the symbol (with or
without offset) closest to the address, the source line (with
or without offset) closest to the address, and the
disassembled instruction string.

Arguments:

Table 17.

−−symbol, −s The address argument is a symbol

−−sourceline, −L The address argument is a source line

−−lines, −l <ln> Disassemble <ln> instructions. If this
argument is absent, disassemble just
one.

<address> The address argument. It must be
numeric, unless −s or −L or their long
forms is given, in which case it must be a
string. If the address is omitted, the
current PC is taken

 http://www.onsemi.com/

AND9370/D

www.onsemi.com
6

MODULES
MODULES returns a list of the source code modules.

Arguments:

Table 18.

−−asm, −a Return the assembly modules. If absent,
return the C modules

SOURCELINES
SOURCELINES returns a list of the source code lines.

Arguments:

Table 19.

−−asm, −a Return only assembly source lines

−c Return only C source lines

<addr> Return the source line that contains this
address

SYMBOLS
SYMBOLS returns a list of the symbols

QUIT
Quit exits the debugger.

Arguments:

Table 20.

<exitcode> Return with this exit code. Optional

REGISTERS
REGISTERS returns a list of the chip registers

CHIPS
CHIPS sets or returns the currently selected chip(s)

Arguments:

Table 21.

−−autodetect, −a Autodetect the chip connected to the
debugger.

−−clear, −c Clear the chip. This will clear the register
list.

−−set, −s Manually set the chip

−−all, −A Returns all available chip models

−−current, −C Returns the currently selected chip(s).

PINEMUL
PINEMUL controls the pin emulation feature. While

debugging, PB6 and PB7 are not available as GPIO, they are
used by the debug interface. The pin emulation feature
however still allows the GPIO state of the PB6 and PB7 pins
to be read and controlled through the debugger software.

Arguments:

Table 22.

−−script, −s Set the script to be evaluated whenever
the pin emulation state changes. The
script may be deleted by setting it to an
empty string.

−−getscript, −g Return the script that is evaluated
whenever the pin emulation state
changes.

−−set-b6 Set the PB6 drive value

−−clear-b6 Set the PB6 drive value to zero

−−set-b7 Set the PB7 drive value

−−clear-b7 Set the PB7 drive value to zero

−−enable Enable the pin emulation feature

−−disable Disable the pin emulation feature

Return value:
Unless the script is set or requested, PINEMUL returns a

list with the following seven entries:
PORTB.6, PORTB.7, DIRB.6, DIRB.7, Debugger Drive

PB6, Debugger Drive PB7, Enable

CPUTRACE
CPUTRACE returns the CPU trace buffer

Arguments:

Table 23.

−−length, −l Set or return the length of the trace
buffer.

Return value:
If −−length is given, CPUTRACE returns the length of the

trace buffer, otherwise it returns the trace buffer entries
accumulated since the last call to CPUTRACE.

PROFILE
PROFILE controls the profiler.

Arguments:

Table 24.

−−disable, −d Disable the profiler.

−c Enable profiling of C source lines

−−asm, −a Enable profiling of assembly source lines

Return value:
If no argument is given, PROFILE returns and clears the

accumulated profile buffer.

 http://www.onsemi.com/

AND9370/D

www.onsemi.com
7

Variables

COMPILERVENDOR
There is no standard Application Binary Interface (ABI)

in the 8052 ecosystem. Different compiler use different
representations of data elements, especially “generic”
pointers (pointers containing an address space tag in
addition to the actual address). In order for the debugger to
be able to access symbolic information, it needs to know
which compiler generated the code in question.

Keil is selected by default, unless a cdb file is loaded, in
which case the default is sdcc.

Valid values:

Table 25.

sdcc Small Devices C Compiler
(http://sdcc.sourceforge.net/)

keil Keil (http://www.keil.com/)

iar IARSystems (http://www.iar.se/)

wickenhaeuser Wickenhäuser
(http://www.wickenhaeuser.de/)

noice NoICE

Tcli/o Channels
AXSDB provides two TCL I/O Channels.

CPUSTAT
Reading a single character from CPUSTAT returns the

state of the microprocessor. The channel issues a read event
if the microprocessor status changes. The channel is not
writeable.

DBGLINK
DBGLINK is the interface to the microprocessor

DebugLink UART. Characters written to DBGLINK can be
read by the microprocessor from the DebugLink UART,
while characters written by the microprocessor to the
DebugLink UART are returned to the TCL script via the
DBGLINK channel.

Convenience Commands
Convenience Commands are defined in axsdb.tcl and

implemented as TCL procedures.

INFOREG
INFOREG prints the most important microprocessor

registers and the current instruction.

IR
IR stops the microprocessor, and then prints the same

information as INFOREG.

SR
SR prints the same information as INFOREG, then steps

the microprocessor, and then prints the same information as
INFOREG.

RI
RI stands for “run interactive”. RI first prints the

microprocessor state (same as INFOREG), then runs the
microprocessor. After that, RI implements a simple terminal
program. Key presses are sent to the DebugLink UART on
the processor, while characters the microprocessor transmits
on the DebugLink UART are printed on the screen. The
terminal terminates if the microprocessor hits a breakpoint,
or CTRL-A or CTRL-C is pressed. CTRL-C halts the
microprocessor, while CTRL-A keeps it running. At the end,
ri prints the new microprocessor state (same as INFOREG)

ALOAD
ALOAD is a convenience LOAD_MEM wrapper. It

determines file types from the file extensions, and autoloads
an sdb file if one is found with the same basic filename.

RLOAD
RLOAD is convenience ALOAD wrapper. It stops the

Microcontroller, then resets it and calls aload with the given
argument.

BERASE
BERASE is a convenience BULKERASE wrapper. It

starts the bulk erase, waits until it finished (or times out),
stops and resets the processor. It returns either “done” or
“failed”.

WAITCPUSTATE
WAITCPUSTATE waits until the CPU state matches the

supplied glob-like pattern. See the description of the TCL
STRING MATCH command for a description of the pattern
syntax.

WAITCPUSTOPPED
WAITCPUSTOPPED waits until the CPU is stopped.

WAITCPURUNNING
WAITCPURUNNING waits until the CPU is running

 http://www.onsemi.com/
http://sdcc.sourceforge.net/
http://www.keil.com/
http://www.iar.se/
http://www.wickenhaeuser.de/

AND9370/D

www.onsemi.com
8

COMMAND LINE FLASH PROGRAMMING

Besides the TCL scriptable command interpreter,
AXSDB also provides command line parameters to easily
program the FLASH from a script. This can be useful for
production programming.

The basic command to program the Microcontroller
FLASH memory is as follows:

axsdb.exe −−oldkeys key −−newkey key −−flashprog file

File is the file name (including the path) to the file
containing the Microcontroller code. It may either be an
Intel Hex file (extension .hex), an OMF−51 file (extension
.omf), or an UBROF 10 file (extension .ubr). The file is
usually located in the bin\Release subdirectory of the
AxCodeBlocks project. If using SDCC, either the .hex or the
.omf file may be used interchangeably. If using IAR ICC,
then only the .ubr file is generated.
Key is a 64 bit hexadecimal number (format

0x0123456789abcdef). This option locks the debug
interface to unauthorized access. After this command
succeeds, the debug interface may no longer be accessed

unless the key number is known. It is strongly recommended
that customer chooses a random number for key and keeps
it secret.

The command returns success / failure status as exit code.
The exit code is stored in the pseudo variable %errorlevel%.
It is 0 on success and 1 on failure.

Another useful command is the following, which sends a
reset pulse to the Microcontroller:

axsdb.exe −−hwreset

If it is desired to reset the key of a locked Microcontroller,
the following command can be used:

axsdb.exe −−oldkeys key −−newkey 0xffffffffffffffff
−−flashprog file

It is important that whenever the flash is programmed,
−−oldkeys key1,key2... is given with all possible keys the
Microcontroller could be locked with. Otherwise,
calibration data is lost.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81−3−5817−1050

AND9370/D

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

 http://www.onsemi.com/
www.onsemi.com/site/pdf/Patent-Marking.pdf

